

Functional glycomics: unveiling the role of protein glycosylation

Wei Huang (黄蔚)

Shanghai Institute of Materia Medica Chinese Academy of Sciences

Nov. 12th-13th 2014 *The 3rd China Workshop on Computational Proteomics (CNCP-2014)*

Protein glycosylation

is a most common posttranslational modification of protein.

Morethan50%mammalianproteinsareglycoproteins.

More than 70% clinical therapeutic protein drugs are glycoproteins.

HIV-1 gp120

Protein glycosylation forms

N-glycan: Asn-linked oligosaccharide

O-glycan: Thr/Ser-linked oligosacharide

Proteoglycan: protein-linked polysacharide

N-glycan structures

Background

Biosynthesis of N-glycan

Subtle change in glycan structure may lead to huge difference in function

Example 1:

Bird flu H5N1 host: a2,3NeuAc cells (majority in birds) Human flu H1N1 host: a2,6NeuAc cells (majority in human)

Glycosylation control?

Native glycoprotein: highly heterogeneous

Method

Transglycosylation activity of Endo-glycosidases

Method

Endo-glycosidase for glycan remodeling

Mechnism of glycosynthase-glycan oxazoline system

Total synthesis of Man9GlcNAc oxazoline (~70 steps)

Nature resource N-glycan

300 egg yolks (3.3 L)

i) added 1.5 L water, stirred at rt for 1h ii) lyophilization

Yolk powder (2.1 Kg)

i) Et₂O wash (6 L x 2), 70% acetone wash (6 L)
ii) 40% acetone extraction (3 L x 2)
iii) drying of extracted solution

Yolk extract powder (36.7 g)

active carbon/celite (2:1) column, eluted by 25% MeCN SGP (1.9 g)

Sialyglycopeptide (SGP)

One-pot synthesis of N-glycan oxazolines from SGP

Chemoenzymatic synthesis of glycoconjugates

Results

Results

Application-1

Glycan remodeling of antibody drugs

Antibody glycosylation

<u>Results</u>

New-generation glycoengineered antibody drugs

Engineered glycoforms of Abs for enhanced functions:

Glycosynthases for IgG glycosylation remodeling

Requirements:

 core-fucosylated or non-fucosylated GlcNAc-IgG as acceptors
 wide substrate specificity in glycan
 good k_{cat}/k_m for both donor and acceptor substrates

Endo S from *Streptococcus pyogenes* Glycosynthases: EndoS mutants

Results

Glycosylation remodeling of Rituximab

SDS-PAGE and LC-MS monitoring of *Results* remodeled Rituximab

m/z

LC-MS of reduced IgG

Glycosylation remodeling of non-fucosylated Rituximab

Results

Glycan analysis of remodeled rituximab glycoforms:

from heterogeneous to homogeneous

Results

FcgIIIa receptor binding assay

Results

Rituximab

Defucosylated Rituximab

FcgIIIa receptor binding by SPR

Glycosylation remodeling of human Intravenous Immunoglobulin (IVIG)

Glycan analysis of remodeled IVIG: site-selectivity

Glycan structures:

Results

Retention Time (min)

Results

Application-2

Glycan and protein folding

<u>Results</u>

GIcMan9GIcNA2 glycan and protein folding

Chaperone CRT/CNX and protein folding

- GICNAC
- Man
- 🔺 Glc

Man9-RNase

Results

Application-3

Glyco-cluster and lectin microarray

Glyco-cluster as a probe for molecular recognition

Probing lectin binding property: Lectin Microarray

J. Am. Chem. Soc. 2009

Results

Results

Application-4

O-GlcNAcyltion identification

O-GlcNAcyltion identification

Traditional method:

Chemoenzyamtic label method:

<u>Results</u>

O-GlcNAcyltion identification

List1: traditional method List2: chemoenzymatic label method

List 1 List 2 601 21 650

identified O-GlcNAc glycoproteins

identified O-GlcNAc glycopeptides

Acknowledgement

Huang Lab, SIMM, CAS

Bofeng Jiang Feng Tang Dr. Xiaofang Liu Yang Yang Bingyang Sun Hongtao Yu Yubo Tang Jian Lu

SIMM, CAS

Prof. Hualiang Jiang Prof. Hong Liu Prof. Beili Wu

iHuman Institute, ShanghaiTech

Prof. Raymond C. Stevens Prof. Zhi-jie Liu Prof. Fei Xu

University of Maryland

Prof. Lai-Xi Wang John Giddens Shu-Quan Fan

Financial Support

NSFC "1000 Young Talent" plan "Pujiang Talent" plan